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Abstract. Racah coefficients of O(n) andSp(2m) are derived from subduction coefficients of
Brauer algebrasDf (n) by using the Schur–Weyl duality relation betweenDf (n) and O(n) or
Sp(2m). It is found that there are two types of Racah coefficients according to irreps of O(n)

or Sp(2m) with or without trace contraction. It is proved that Racah coefficients with no trace
contraction in the irreps are trivial and the same as those of unitary groupsU(n), which are rank
n-independent, and those with trace contraction usually aren-dependent. Racah coefficients
with trace contraction for the resulting irreps [n1, n2, n3, 0̇] with

∑3
i=1 ni 6 3 are tabulated.

1. Introduction

Racah coefficients of classical Lie groups are useful in many branches of physics, especially
in atomic spectroscopy, nuclear structure and particle physics. There has been a great deal of
work on this topic since the pioneering work of Wigner [1] and Racah [2]. These coefficients
or so-called 6j symbols by a different definition were first initiated from recoupling problems
in angular momentum theory, for which the underlying group isSO(3). Then, the same
problem was also found to be of importance in disparate fields of physics. There are
many approaches to the Racah coefficients; the literature is now awash with different
expressions for certain kinds of 3nj symbols. However, analytical expressions are difficult
to come by for the general Lie group, mainly because there is a multiplicity problem in the
reduction of Kronecker products of pairs of irreps. Some missing labels need to be added
in, for which a procedure is often difficult to do systematically. Usually Racah coefficients
can be obtained by using a knowledge of a few simple case to get others through the
extension of the Biedenharn–Elliot sum rule. This bootstrap method was developed by
Bickerstaff and Wybourne [3], Searle and Butler [4]. There are also many other methods.
For example, generating functions can be used in some special cases [5], isoscalar factors
can be constructively used in some cases [6], and we sometimes use the mathematical
structure inherent in a particular physical problem [7–10]. We should emphasize the works
of Kramer [11], and Chenet al [12]. They used the Schur–Weyl duality relation between
the symmetric groupSf and the unitary groupU(n), which enabled them to deriveU(n)

Racah coefficients from subduction coefficients ofSf . One can calculate these coefficients
once and for all because, in this case, the Racah coefficients ofU(n) only depend on irreps,
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not on rankn. Extensive tables ofU(n) Racah coefficients were thus made by using this
method [12].

Algebraic expressions ofSO(n) Racah coefficients were discussed for some special
cases by Juddet al [9, 10], and Ališauskas [6]. In [10], Juddet al also claimed theirSO(n)

results with conjugation of irreps apply toSp(−n) as well. The negative-dimensional groups
were first discussed in the physics literature byČvitanovíc and Kennedy [13], and further
by Dunne [14]. The isomorphism between O(n) andSp(−n) with conjugation of the same
irrep were also proved in mathematics with the help of Brauer’s centralizer algebras [15–17].

In our previous paper, we have outlined a method for evaluating subduction coefficients
of Brauer algebrasDf (n). In the following, we will use the results to derive Racah
coefficients of O(n) andSp(2m) with the help of the Schur–Weyl duality relation between
Df (n) and O(n) or Sp(2m). In section 2, we will discuss the Schur–Weyl duality relation
and present a general formula for evaluating Racah coefficients. In section 3, we will discuss
some general properties of these coefficients. In section 4, we will list some rank-dependent
Racah coefficients for the resulting irreps [n1, n2, n3, 0̇] with

∑3
i=1 ni 6 3.

2. Evaluation of SO(n) and Sp(2m) Racah coefficients

O(n) andSp(2m) Racah coefficients, the so-calledU coefficients are simply a generalization
of the SO(3) Racah coefficients, which are the elements of a unitary matrix between bases
with two different coupling orders of three irrepsv1, v2, andv3:

|(v1v2)v12, v3; vw〉t12t =
∑

v23t23t ′
U(v1v2vv3; v12v23)

t12t
t23t ′ |v1(v2v3)v23; vw〉t23t

′
(1)

where four multiplicity labels appeared,t12 = 1, 2, . . . , {v1v2v12}, t = 1, 2, . . . , {v12v3v},
t ′ = 1, 2, . . . , {v1v23v}. Sometimes one needs to use 6j symbols, which, in analogy to that
of Jahn [18] forSO(3), is defined in terms ofU coefficients by{

v1 v2 v12

v3 v v23

}t12t

t23t ′
= [Pv12(n)Pv23(n)]−1/2U(v1v2vv3; v12v23)

t12t
t23t ′ (2)

wherePµ(n) is the dimension of O(n) or Sp(n) for the irrepµ. TheU coefficients satisfy
the following unitarity conditions:∑

v23t23t ′
U(v1v2vv3; v12v23)

t12t
t23t ′U(v1v2vv3; v̄12v23)

ρ12ρ

t23t ′ = δt12ρ12δtρδv12v̄12∑
t12v12t

U(v1v2vv3; v12v23)
t12t
t23t ′U(v1v2vv3; v12v̄23)

t12t
ρ23ρ ′ = δt23ρ23δt ′ρ ′δv23v̄23.

(3)

From the early work of Brauer [15] and recent study [16, 17] one knows that there is
an important relation, the so-called Schur–Weyl duality relation between the Brauer algebra
Df (n) and O(n) or Sp(2m). If G is the orthogonal group O(n) or the sympletic group
Sp(2m), the corresponding centralizer algebraBf (G) are quotients of Brauer’sDf (n) or
Df (−2m), respectively. We also need a special class of Young diagrams, the so-called
n-permissible Young diagrams defined in [17]. A Young diagram [λ] is said to ben-
permissible ifPµ(n) 6= 0 for all subdiagrams [µ] 6 [λ], where the subdiagrams [µ] can be
obtained from [λ] by taking away appropriate boxes. In this paper, we only need to discuss
the integern case. A Young diagram [λ] is n-permissible if and only if:

(i) Its first two columns contain at mostn boxes forn positive.
(ii) It contains at mostm columns forn = −2m a negative even integer.
(iii) Its first two rows contain at most 2− n boxes forn odd and negative.
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If these conditions are satisfied,Bf (n) is isomorphic toBf (O(n)) for n positive, to
Bf (O(2−n)) for n negative and odd, and toB(Sp(2m)) for n = −2m < 0. In the following,
we always assume that all irreps to be discussed aren-permissible withn 6 f −1 for n > 0
or −n 6 f − 1 for negativen. The latter condition implies thatDf (n) is to be considered
semisimple.

Hence, an irrep ofBf (O(n)) or Bf (Sp(2m)) is the same irrep of O(n) or Sp(2m). But
the labelling schemes ofB(G) and G are different. The former is labelled by its Brauer
algebra indices, while the latter is labelled by its tensor components. This is the so-called
Schur–Weyl duality relation betweenBf (G) andG, whereG = O(n) or Sp(2m).

Bf (G) invariants defined by

U(v1v2vv3; v12v23)
t12t
t23t ′ =

∑
ρ12ρ23ρ

〈
v

ρ

∣∣∣∣v,
tv12 v3

ρ12 ρ3

〉 〈
v12

ρ12

∣∣∣∣v12,
t12v1 v2

ρ1 ρ2

〉
×

〈
v

ρ

∣∣∣∣v,
t ′v1 v23

ρ1 ρ23

〉 〈
v23

ρ23

∣∣∣∣v23,
t23v2 v3

ρ2 ρ3

〉
(4)

where 〈
v

ρ

∣∣∣∣v,
tv1 v2

ρ1 ρ2

〉
is the subduction coefficient ofBf (G), and the summation in (4) carried out under fixed
ρ1, ρ2, and ρ3, only depends on irrepsv1, v2, v3, v, v12, v23, and does not depend on
sub-indices. According to the Schur–Weyl duality relation, (4) is also theU coefficients of
G satisfying the unitarity condition given in (3). One can thus use (4) to calculate Racah
U coefficients of O(n) andSp(2m) from subduction coefficients of Brauer algebrasDf (n).
The SDCs ofDf (n) are the same as those ofSf when there is no trace contraction in the
irreps. These SDCs have already been listed in [12]. While SDCs with trace contractions in
the irreps considered for the reductionsDf (n) ↓ Df1(n)×Df2(n) for f = f1 +f2 6 5 have
already been given in our previous paper I. We can use these results with (4) to calculate
Racah coefficients of O(n) or Sp(2m).

3. Some properties of O(n) and Sp(2m) Racah coefficients

It is proved in [17] that generators{g̃i , ẽi} of Bf (Sp(2m)) are compatible with the relation for
{−gi, −ei} of Df (x) with x = −2m. Thus, there exists an isomorphism betweenBf (O(n))

and Bf (Sp(2m)) by making the maps fromBf (O(n)) to Bf (Sp(2m)) with gi → −g̃i ,
ei → −ẽi , and n → −2m. In this case an irrep [λ] of Bf (O(−n)) is the irrep [̃λ] of
Bf (Sp(2m)), where [̃λ] is the Young diagram conjugate to [λ]. Hence, U coefficients
derived from (4) for O(n) are also those ofSp(−2m) up to a phase with the replacements:
n → −2m and all irrepsvi → ṽi . That is, we only need to derive O(n) Racah coefficients
because these coefficients are also those ofSp(2m) up to a phase factor with the above
mentioned replacements. This property ofU coefficients of O(n) and Sp(2m) asserts
the negative dimensionality discussed in [13, 14]. Secondly, irreps ofDf (n) without trace
contraction are the same as those of the symmetric groupsSf . Using this fact and expressions
of U coefficient given in (4), one can deduce that Racah coefficients of O(n) with no trace
contraction for the irreps in the coupling are the same as RacahU coefficients ofU(n)

because Racah coefficients ofU(n) are alsoU coefficients of symmetric groups with the
same expression given in (4), which was first discussed by Kramer [11] and then used to
deriveU(n) Racah coefficients extensively by Chenet al [12]. Hence, there are two types
of O(n) or Sp(2m) RacahU coefficients. The first type ofU coefficients of O(n) are no
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trace contractions for the irreps in the coupling and the same as those ofU(n). This type
of U coefficient is rankn-independent. The numerous tables ofU(n) Racah coefficients
given in [12] are also type one Racah coefficients of O(n). Using the isomorphism between
Bf (O(n)) and Bf (Sp(2m)), we deduce that type one Racah coefficients of O(n) and that
of Sp(2m) satisfy

UU(n)(v1v2vv3; v12v23)
t12t
t23t ′ = UO(n)(v1v2vv3; v12v23)

t12t
t23t ′

UU(n)(ṽ1ṽ2ṽṽ3; ṽ12ṽ23)
t12t
t23t ′ = η1USp(n→−2m)(v1v2vv3; v12v23)

t12t
t23t ′

(5)

where the phase is chosen in the same way as that ofU(n). Furthermore, using symmetry
property ofU(n) Racah coefficients

UU(n)(ṽ1ṽ2ṽṽ3, ṽ12ṽ23)
t12t
t23t ′ = η1UU(n)(v1v2vv3; v12v23)

t12t
t23t ′ (6)

whereη1 is phase factor which has been determined in [12], we get the following equality
for the type one Racah coefficients:

UO(n)(v1v2vv3; v12v23)
t12t
t23t ′ = USp(2m)(v1v2vv3; v12v23)

t12t
t23t ′ (7)

because Racah coefficients ofU(n) are rankn-independent.
The type twoU coefficients of O(n) or Sp(2m) with trace contractions in the irreps,

however, are usually rankn-dependent. Symmetry property given by (6) is not valid for
type two Racah coefficients of O(n) and Sp(2m) in general. We shall list some of the
Racah coefficients of this type in the next section.

Both type-one and type-two Racah coefficients have the symmetry

UG(v3v2vv1; v23v12)
t23t

′
t12t = η2UG(v1v2vv3; v12v23)

t12t
t23t ′ (8)

whereG = O(n) or Sp(2m), andη2 is equal to

η2 = ε2(v1v2v12t12)ε2(v12v3vt)ε2(v2v3v23t23)ε2(v1v23vt ′) (9)

which has been listed in [12] for type-one Racah coefficients andε2 is given in table 1–4
for type-two cases.

Table 1. The Phase factorsε2(v1v2v).

D2(n) × D1(n) ↓ D3 D3(n) × D1(n) ↓ D4

[v1] [v2] [v] ε2 [v1] [v2] [v] ε2 [v1] [v2] [v] ε2

[0] [1] [1 −1 [1] [3] [2] +1 [1] [1] [2] +1
[2] [1] [1] +1 [1] [21] [2] −1 [1] [1] [12] −1
[12] [1] [1] +1 [1] [13] [12] +1 [1] [21] [12] +1

Table 2. The Phase factorsε2(v1v2v).

D2(n) × D2(n) ↓ D4

[v1] [v2] [v] ε2 [v1] [v2] [v] ε2

[2] [12] [12] +1 [0] [12] [12] −1
[2] [12] [2] −1 [0] [2] [2] +1
[2] [2] [2] +1 [12] [12] [12] −1
[12] [12] [2] +1 [2] [2] [12] +1
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Table 3. The Phase factorsε2(v1v2v).

D2(n) × D3(n) ↓ D5

[v1] [v2] [v] ε2 [v1] [v2] [v] ε2

[12] [21] [13] −1 [2] [13] [13] −1
[12] [13] [13] +1 [2] [21] [13] +1
[12] [1] [13] +1 [2] [21] [3] −1
[2] [3] [3] +1 [3] [0] [3] +1
[12] [21] [3] +1 [2] [1] [3] +1

Table 4. The Phase factorsε2(v1v2v).

D1(n) × D4(n) ↓ D5

[v1] [v2] [v] ε2 [v1] [v2] [v] ε2

[1] [12] [13] −1 [1] [14] [13] −1
[1] [211] [13] −1 [1] [2] [3] +1
[1] [31] [3] −1 [1] [4] [3] +1

4. Tables of O(n) and Sp(2m) Racah coefficients

In this section, we will list the type two Racah coefficients of O(n) for the resulting irreps
[n1, n2, n3, 0̇] with

∑3
i=1 ni 6 3, which are derived by using (4) and SDCs of Brauer

algebras given in I. From the results other Racah coefficients of O(n) can be obtained by
the symmetry property given in (8), which have not been tabulated here. On the other hand,

Table 5. Racah coefficientsUSp(2m)(1 12 12 1; v12v23).

v23\v12 [1] [21] [13]

[0] − m+1
(m−1)(2m+1)

− 2m
2m+1

√
m+1

3(m−1)

√
4(m−2)m2

3(2m+1)(m−1)2

[21] − 2m
2m+1

√
m+1

3(m−1)
4m+1

3(2m+1)

√
4(m−2)(m+1)
9(2m+1)(m−1)

[13]
√

4(m−2)m2

3(2m+1)(m−1)2

√
4(m−2)(m+1)
9(2m+1)(m−1)

m+1
3(m−1)

Table 6. Racah coefficientsUO(n)(1 1 1 1; v12v23).

v23\v12 [0] [2] [12]

[0] − 1
n

√
(n+2)(n−1)

2n2

√
n−1
2n

[2] −
√

(n+2)(n−1)

2n2
n−2
2n

−
√

n+2
4n

[12]
√

n−1
2n

√
n+2
4n

− 1
2
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Table 7. UO(n)(2121; v12v23).

v23\v12 [1] [21] [30]

[0]
√

2
(n+2)(n−1)

−
√

2(n−2)
3(n−1)

√
n+4

3(n+2)

[2]
√

(n+4)(n−2)
2(n+2)(n−1)

√
n+4

6(n−1)

√
n−2

3(n+2)

[12] −
√

n2

2(n+2)(n−1)

√
n−2

6(n−1)

√
n+4

3(n+2)

Table 8. UO(n)(1221; v12v23).

v23\v12 [1] [21] [30]

[0] n−2
(n+2)(n−1)

− n
n−1

√
n−2

3(n+2)

√
2(n+4)n2

3(n−1)(n+2)2

[21] − n
n−1

√
n−2

3(n+2)
2n−1

3(n−1)

√
2(n+4)(n−2)
9(n−1)(n+2)

[3]
√

2(n+4)n2

3(n−1)(n+2)2

√
2(n+4)(n−2)
9(n−1)(n+2)

n−2
3(n+2)

Table 9. UO(n)(1212131; v12v23).

v23\v12 [12] [211] [14]

[21] −
√

(n−3)(n+2)
3(n−2)(n−1)

√
(n−4)2

3(n−1)(n−2)

√
n+2

3(n−1)

[1]
√

2
(n−2)(n−1)

−
√

(n+2)(n−3)
2(n−1)(n−2)

√
n−3

2(n−1)

[13]
√

2(n−3)
3(n−2)

√
n+2

6(n−2)

√
1
6

Table 10. UO(n)(1211312; v12v23).

v23\v12 [21] [13] [1]

[21] − n−7
3(n−1)

−
√

2(n+2)
9(n−1)

√
2(n+2)(n−3)

3(n−1)2

[13]
√

2(n+2)
9(n−1)

2
3

√
n−3

3(n−1)

[1]
√

2(n+2)(n−3)

3(n−1)2 −
√

n−3
3(n−1)

− 2
n−1

Racah coefficients ofSp(2m) can also be obtained by using the following relation:

USp(2m)(v1v2vv3; v12v23) = ηUO(n→−2m)(ṽ1ṽ2ṽṽ3; ṽ12ṽ23) (10)

whereη is an appropriate phase factor, which can be chosen as+1 because the unitarity
conditions for O(n) Racah coefficients are satisfied for alln including the negativen
case. One can check thatn appears under the square root in the expressions of the Racah
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Table 11. UO(n)(2132; v12v23).

v23\v12 [1] [21] [3]

[1] 2n
(n−1)(n+2)

−
√

2n(n+1)(n−2)

3(n+2)(n−1)2

√
(n−2)(n+1)(n+6)

3(n−1)(n+2)2

[21] −
√

2n(n−2)(n+1)

3(n+2)(n−1)2
n−3

3(n−1)

√
2n(n+6)

9(n+2)(n−1)

[3]
√

(n−2)(n+1)(n+6)

3(n−1)(n+2)2

√
2n(n+6)

9(n+2)(n−1)
2n

3(n+2)

Table 12. UO(n)(2231; v12v23).

v23\v12 [4] [31] [20]

[3]
√

n(n−2)
6(n+2)(n+4)

√
n+6

6(n+2)

√
2(n+1)(n+6)
3(n+2)(n+4)

[21]
√

(n+6)(n−2)
3(n+4)(n−1)

√
n

3(n−1)
−

√
n(n+1)

3(n+4)(n−1)

[1]
√

n(n+1)(n+6)
2(n+4)(n−1)(n+2)

−
√

(n−2)(n+1)
2(n−1)(n+2)

√
2(n−2)

(n−1)(n+4)(n+2)

Table 13. UO(n)(121121; v12v23).

v23\v12 [1] [21] [13]

[0]
√

2
n(n−1)

√
2(n2−4)
3n(n−1)

√
n−2
3n

[2]
√

n2−4
2n(n−1)

√
(n−4)2

6n(n−1)
−

√
n+2
3n

[12] −
√

n−2
2(n−1)

√
n+2

6(n−1)
−

√
1
3

Table 14. UO(n)(112121; v12v23).

v23\v12 [1] [21] [13]

[1] 1
n−1 −

√
n2−4

3(n−1)2

√
2(n−2)
3(n−1)

[21] −
√

n2−4
3(n−1)2

2n−5
3(n−1)

√
2(n+2)
9(n−1)

[13]
√

2(n−2)
3(n−1)

√
2(n+2)
9(n−1)

1
3

coefficients of O(n) in pairs so that we never require to introduce imaginary phase factors
for Racah coefficients ofSp(2m) after the replacementn → −2m, and can always choose
the phase factorη to be +1. For example, one can obtain Racah coefficients ofSp(2m)

given in table 5 from those of O(n) listed in table 8.
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Table 15. UO(n)(21121; v12v23).

v23\v12 [1] [21]

[2] −
√

n
2(n−1)

√
n−2

2(n−1)

[12]
√

n−2
2(n−1)

√
n

2(n−1)

Table 16. UO(n)(12121; v12v23).

v23\v12 [1] [21]

[1] 1
n−1

√
n(n−2)

(n−1)2

[21] −
√

n(n−2)

(n−1)2
1

n−1

Table 17. UO(n)(21312; v12v23).

v23\v12 [21] [3]

[1] −
√

2(n−2)
3(n−1)

√
n+1

3(n−1)

[21]
√

n+1
3(n−1)

√
2(n−2)
3(n−1)

Table 18. UO(n)(211312; v12v23).

v23\v12 [1] [21]

[13]
√

n−3
3(n−1)

√
2n

3(n−1)

[21] −
√

2n
3(n−1)

√
n−3

3(n−1)

Table 19. UO(n)(21231; v12v23).

v23\v12 [31] [2]

[21]
√

2
n(n−1)

√
(n−2)(n+1)

n(n−1)

[1] −
√

(n−2)(n+1)
n(n−1)

√
2

n(n−1)

Table 20. UO(n)(212131; v12v23).

v23\v12 [211] [12]

[21] −
√

2(n−3)
3(n−2)

√
n

3(n−2)

[13]
√

n
3(n−2)

√
2(n−3)
3(n−2
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Table 21. UO(n)(12121; v12v23).

v23\v12 [1] [21]

[2] −
√

n
2(n−1)

√
n−2

2(n−1)

[12]
√

n−2
2(n−1)

√
n

2(n−1)

Table 22. UO(n)(11221; v12v23).

v23\v12 [1] [21]

[1] 1
n−1 −

√
n(n−2)

(n−1)2

[21]
√

n(n−2)

(n−1)2
1

n−1

5. Conclusion

In this paper, we have given a formula for evaluating Racah coefficients of O(n) and
Sp(2m) from SDCs of Brauer algebrasDf (n) by using the Schur–Weyl duality relation
betweenDf (n) and O(n) or Sp(2m). We found that there are two types of O(n) and
Sp(2m) Racah coefficients. The type-one Racah coefficients aren-independent, which are
the same as those ofU(n); and O(n), andSp(2m) Racah coefficients are equal to each other
with the same irreps in the coupling. The type-two Racah coefficients of O(n) andSp(2m)

are usuallyn-dependent. Using the isomorphism betweenBf (O(n)) andBf (Sp(2m)), we
can obtainSp(2m) Racah coefficients from those of O(n) by the replacementn → −2m

and the conjugation of irreps. It should be noted that the results tabulated in this paper are
all multiplicity-free in the coupling. The non-multiplicity-free type-one Racah coefficients
of U(n) given in [12] are also those of O(n) andSp(2m) of the same irreps, while those
of type two can also be derived by using our method. The procedure to be taken for the
multiplicity case is the same as that discussed in [19]. Finally, it should be pointed out that
the Racah coefficients of quantum groups of B, C, and D types can also be derived from
SDCs of Birman–Wenzl algebrasCf (r, q). The SDCs ofCf (r, q) can be evaluated by using
the same method outlined in I, which will be discussed in the near future.
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